

EPFL JEMS tutorial

Part 1: Simulating diffraction patterns for Al FCC with JEMS

Open the structure file for an FCC material with single atom motif (here Al).

- (a) Simulate the diffraction pattern on different zone axes ($[0\ 0\ 1]$, $[1\ 1\ 0]$, $[1\ 1\ 1]$, ...).
- (b) How does the pattern change when you change: camera length; convergence angle (“Beam half conv.”); acceptance angle (“Accept.”); “Deviation”.

Camera length \rightarrow magnification of pattern | Deviation \rightarrow length of rod
Acceptance angle \rightarrow objective aperture

- (c) Polls: How can you change convergence angle and acceptance angle on a microscope? What does “Deviation” relate to?

EPFL JEMS tutorial

Part 1: Simulating diffraction patterns for Al FCC with JEMS

(d) Change acceleration voltage using the “Voltage” setting. What happens? Why?

Voltage $\uparrow \Rightarrow \lambda \downarrow$. Scattering angles $\downarrow \Rightarrow$ pattern “de mag. lies”
- $2\theta_B \approx \frac{1}{d}$ - And Ewald sphere flatter \Rightarrow see more diffraction spots

(e) Methods demonstration: adding higher order Laue zones. Is there a first order Laue zone for the [1 0 1] zone axis? Why?

$$(\text{FOLZ: } hU + kV + lW = 1)$$

$$hU + kV + lW = h + l = 1$$

Not possible for h, k, l all odd or all even

(f) Methods demonstration: setting up a “2-beam” condition. Select “All beams” Dynamical calculation (Crystal / matrix tab) for the full effect.

EPFL JEMS tutorial

Part 2: Pattern simulation using other structures

2.1 AuCu₃

(a) Restart JEMS. Select AuCu₃ in cubic. Simulate the SADP on various zone axes.

No systematic absence

(b) Compare its pattern on [0 0 1] zone axis to that from Al on [0 0 1]. What difference do you notice in the diffracting planes? Why is there this difference for the two structures?

Au: 0,0,0

Cu: face centred sites

$$F_g = f_{Au} + f_{Cu} \left[e^{\pi i (h+k)} + e^{\pi i (h+l)} + e^{\pi i (k+l)} \right]$$

If h, k, l all even / all odd:

$$F_g = f_{Au} + 3f_{Cu}$$

- mixed

$$F_g = f_{Au} - f_{Cu}$$

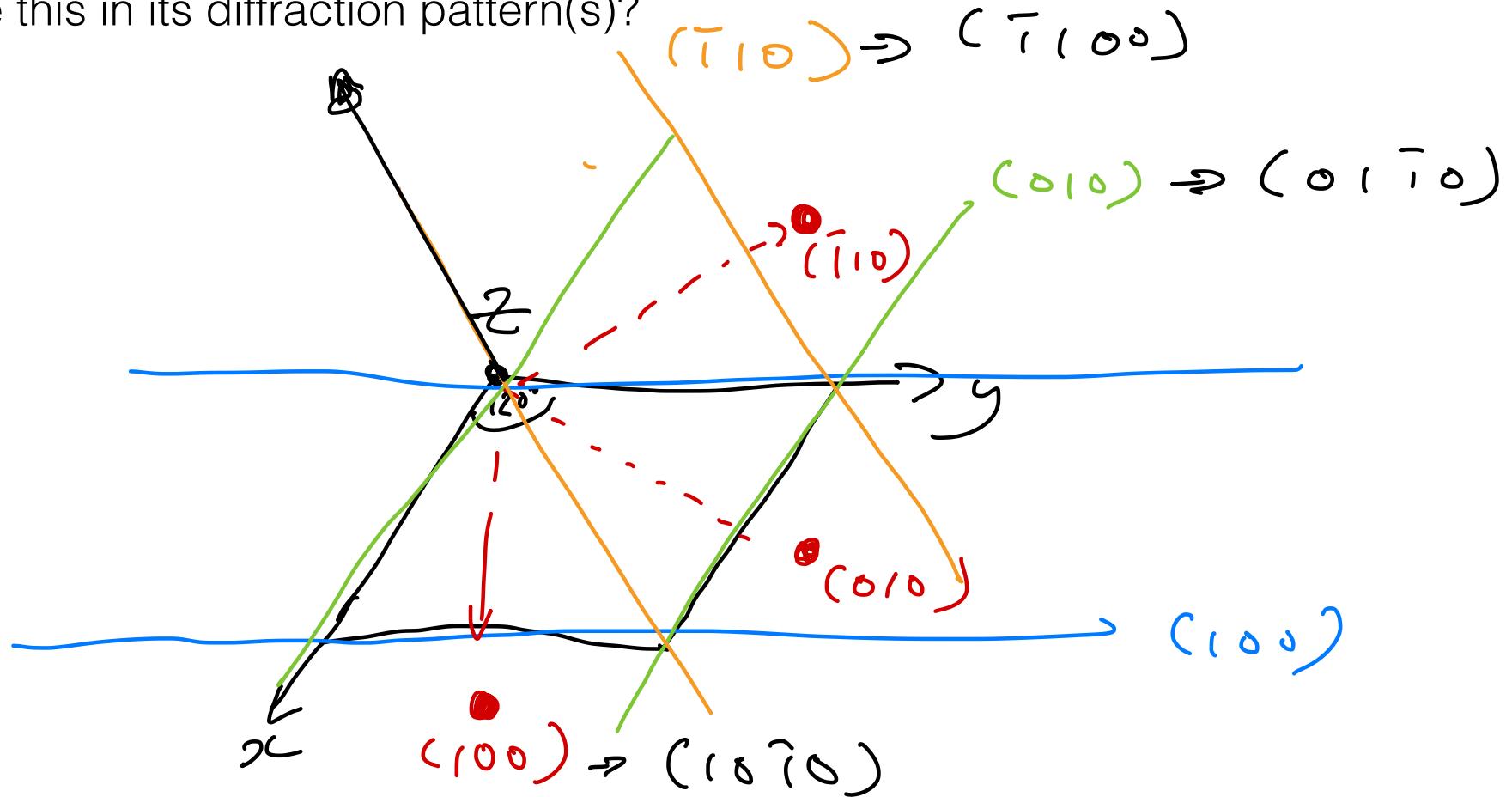
FCC with 2 atoms per lattice point:

$0, 0, 0$
 $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$

2.2 Si

(a) Now select Si in cubic. Si has the diamond structure. How does this structure compare to that of Al? Simulate the SADP on various zone axes.

$\{002\}$ planes are also systematically absent


(b) Compare its pattern on $[001]$ zone axis to that from Al on $[001]$. What difference do you notice in the diffracting planes? Why is there this difference for the two structures?

$$a = b \neq c$$

$$\alpha = \beta = 90^\circ \quad \gamma = 120^\circ$$

2.3 Graphite

(a) Now select Graphite in hexagonal. What is the defining symmetry of graphite? How can you see this in its diffraction pattern(s)?

